数据分析学长经验交流,数据分析学长经验交流怎么写

大家好,今天小编关注到一个比较有意思的话题,就是关于数据分析学长经验交流的问题,于是小编就整理了1个相关介绍数据分析学长经验交流的解答,让我们一起看看吧。
想做数据分析是学python还是学大数据?
1.Python目前的使用基本排名前四,而数据分析需要的是数据整理以及数据库等东西。跟学习Python影响不是很大,而且学习Python比学习C++,JAVA等简单一些。
2.学习什么软件只是作为工具而言,主要学习的是借用工具处理问题的方法。所以关于学什么,其实你自己已经有一些答案。
在过去几年中,对数据分析师和数据科学家的需求一直在快速增长。Python是用于数据分析最流行的语言,如果你想在数据字段中,您将工作可能需要学习Python(尽管R可以是一个伟大的选择。
像任何编程语言一样,Python需要花费一些时间来掌握。但是,如果您有动力并愿意学习一种新技能,那么就有很大的机会来满足就业市场对数据科学家的需求。数据科学领域充满了需要Python编程能力的工作。在2017年,IBM估计到2020年对数据科学专业人员的需求将增长28%。
了解Python是在包括工程,医学研究,人工智能,机器学习,汽车等行业的数据科学和其他编程工作中的一项关键技能。尽管学习数据科学似乎很漫长,但您可能会惊讶地发现,进入数据科学的Python的入门门槛实际上很低,尤其是与高回报相比。
为什么Python需求如此之高?
Python社区内部有个玩笑,说Python是所有功能的第二好语言。当然,最好的办法是主观的,但是Python非常灵活。这是最常见的- 数据的科学使用的语言(R是紧随其后),并且它也经常在其他一些行业的使用。
其广泛普及的原因之一是它是处理数据时更易于学习和使用的语言之一。而且,***的是,对于雇主和数据科学家来说,不需要多年的学习时间即可掌握。
学习Python需要多长时间?
只要有适当的时间和奉献精神,您就可以在短短几个月内学习Python !
就像任何技能,你如何快速学习Python 是最终取决于你有多少时间和精力投入。虽然每个人都学会以自己的节奏。
大号等我们一起来看看一些是进入学习Python的,包括我们的事情原因,研究这种语言,为充分利用您的时间花费的技巧学习ING。
小飞象数据分析社群探讨过这个问题,我们当时也给出了一些建议,以及群友的回答,今天我们来梳理一下这个问题。
我们认为要先将精力放在数据分析的思路和训练上,多去看一些商业数据模型和数据分析案例的资料,最终形成自己的分析思路。千万不要一上来就啃Python或者学大数据,可以先上手Excel+SQL这2个简单的数据分析工具来入门。有SQL基础以及数据分析的基础后再学Python和大数据挖掘会相对容易些。
但是,需要值得注意的是,要入门数据分析岗,我们要先做职业的规划:
- 明确自己职业规划是走业务方向还是技术方向。
- 要充分对目标领域的行业知识进行全面的调研,了解行业背景及行业相关的指标,然而,在行业的选择上,要以擅长的、热爱的和有发展前景的即是最佳选择)。
- 了解目标行业常用的数据处理工具、数据生产流程及数据应用。针对数据工具进行系统性学习。
到此,以上就是小编对于数据分析学长经验交流的问题就介绍到这了,希望介绍关于数据分析学长经验交流的1点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.lnbtw.com/post/18526.html