首页学习资料大数据智能学习资料,大数据智能课程

大数据智能学习资料,大数据智能课程

cysgjjcysgjj时间2024-03-21 05:12:29分类学习资料浏览61
导读:大家好,今天小编关注到一个比较有意思的话题,就是关于大数据智能学习资料的问题,于是小编就整理了1个相关介绍大数据智能学习资料的解答,让我们一起看看吧。大数据主要学习什么内容?有什么要求和条件?大数据主要学习什么内容?有什么要求和条件?大数据中也有多种岗位,有的偏向开发,有的偏向运维,有的偏向数据分析与挖掘。开发……...

大家好,今天小编关注到一个比较意思的话题,就是关于大数据智能学习资料问题,于是小编就整理了1个相关介绍大数据智能学习资料的解答,让我们一起看看吧。

  1. 大数据主要学习什么内容?有什么要求和条件?

大数据主要学习什么内容?有什么要求和条件?

大数据中也有多种岗位,有的偏向开发,有的偏向运维,有的偏向数据分析与挖掘。开发的话java居多,不过只需要JavaSE层面即可,也可以选用Scala/Python开发。数据分析与挖掘基本上就是Python了。所以建议学习Python了。要求与条件的话,如果计算机/数学/统计相关专业最好,不过还是看个人学习能力是否坚持

1) 简单点评:

大数据智能学习资料,大数据智能课程
图片来源网络,侵删)

发展不错,需求不少,不过需求中主要是数据分析相关岗位,牵涉到算法建模等高级内容的话实际上不适合毕业不同科学生。建议普通本科或专科学生从数据分析入行,掌握Python,以后逐步向高级数据分析师、数据挖掘工程师人工智能开发工程师方向走,

2)发展前景:

大数据类职位需求增幅仅次于AI岗位。眼下,几乎所有互联网企业均把数据人才列为团队标配。许多公司在数据层面增加投入,大量招募具有算法和建模能力的人才,力求通过数据沉淀与挖掘更好地推进产品的迭代。数据架构师、数据分析师成为企业争抢对象,过去一年招聘需求提高150%以上。2017,互联网公司对AI和数据人才的争抢活跃度提高了30%以上,企业间相互挖角行为变得更加频繁,人才争夺激烈程度全面升级。物联网、智慧城市、增强现实(AR)与虚拟现实(VR)、区块技术、语音识别、人工智能、数字汇流是大数据未来应用的七***展方向。

大数据智能学习资料,大数据智能课程
(图片来源网络,侵删)

3)行业定位:

4)面向专业:

计算机、数学与统计、物理电子通信工程、物联网、网络工程等相关专业大专以上学生。推荐中上游学生学习。

大数据智能学习资料,大数据智能课程
(图片来源网络,侵删)

5)薪酬分析:

学习大数据需要掌握以下内容:

  1. 数据处理和管理了解数据的获取、存储、清洗、转换和管理方法包括数据仓库、数据湖和数据管道等。
  2. 大数据技术和工具:熟悉大数据处理和分析的技术和工具,如Hadoop生态系统(HDFS、MapReduce、Hive、Pig)、Spark、NoSQL数据库(MongoDB、Cassandra)等。
  3. 数据分析和挖掘:学习数据分析和挖掘的基本概念、技术和方法,包括数据可视化、统计分析、机器学习和深度学习等。
  4. 分布式计算和并行处理:了解分布式计算的原理和并行处理的技术,能够进行大规模数据的并行计算和分布式存储。
  5. 编程和数据编程语言:熟悉至少一种编程语言,如Python、J***a或Scala,能够使用编程语言进行数据处理和分析的开发和实现。
  6. 数据安全和隐私保护:了解数据安全和隐私保护的基本[_a***_]和方法,掌握数据脱敏、加密和权限控制等技术。

要求和条件可能会因个人学习目标就业需求而有所不同,但以下是一些常见的要求和条件:

  1. 基础知识:具备计算机科学、数据科学或相关领域基础知识,包括数据结构、算法、数据库、统计学等。
  2. 编程能力:具备良好的编程能力,能够熟练使用至少一种编程语言进行数据处理和分析的开发。
  3. 数学和统计学知识:具备一定的数学和统计学知识,能够理解和应用统计分析和机器学习算法。
  4. 学习能力和自主学习能力:大数据领域发展迅速,要求具备良好的学习能力和自主学习能力,能够不断跟进最新的技术和方法。
  5. 团队合作沟通能力:大数据项目通常需要与团队合作,因此具备良好的团队合作和沟通能力是必要的。
  6. 实践经验:具备一定的实践经验,通过参与项目或实际应用来提升自己在大数据领域的能力。

需要注意的是,大数据是一个广泛的领域,具体的要求和条件会根据不同的职位和工作角色而有所差异。因此,根据自身的兴趣职业目标,可以进一步了解和学习相关的专业知识和技能

大数据开发的发展已经趋于成熟,小伙伴在学习过程中可以参考一些案例来学习,同时,由于企业对大数据开发技术的需求量在不断上涨,市场上的相关大数据开发岗位在逐渐增多,因此,小伙伴入行大数据是一个比较不错的选择

大数据开发技术的学习所涉猎到的知识体系是比较庞大的,所包含的知识是比较多且杂的,因此,小伙伴想要学好大数据开发技术还真不是一件简单的事,需要小伙伴系统的学习大数据开发技术知识。对于零基础小伙伴来讲,大数据培训学习是小伙伴获得大数据开发技术知识的有效学习方式

随着大数据开发技术的火热,市面上出现了很多大数据培训机构,小伙伴在选择大数据培训班时候,要通过多方面的对比考察了解,理性选择一家比较靠谱的大数据培训机构来学习。那小伙伴选择了适合自己的大数据培训班之后,在培训班如何进行学习呢?

1.学习积累相关编程基础知识

大数据开发技术基础知识的学习离不开j***a、Python、R语言等编程基础的积累,因此,小伙伴在大数据培训班要以培训课程内容为主线,学习相应的编程基础语言,在不断的学习过程中,丰富自身编程知识结构。

2.注重实战项目案例的练习

大数据开发技术是一项比较复杂的编程语言,小伙伴想要学好大数据开发技术,除了不断的积累编程基础知识之外,还需要练习相关的项目实战案例,才可能快速的理解学习大数据开发技术知识,通过项目实战案例的练习,可以锻炼小伙伴在项目开发过程中解决问题的能力,让小伙伴更快速的适应公司的工作环境

3.交流性学习

小伙伴在学习大数据开发技术的过程中,要不断的去和老师同学进行交流,在交流的过程中,不断学习好的编程思路,将这些思路融会贯通,融入到自己的编程思维当中,这样不间断的学习,可以更有利的帮助小伙伴成长

最后,小伙伴在学习大数据开发技术知识过程中,适合自己的学习方法重要,在这个学习过程中,小伙伴要养成良好的学习习惯,确定自己的发展方向,针对性学习,以用为学。尚硅谷大数据培训是一家比较靠谱的线下面授教学职业教育培训机构,老师都是具有一定项目实战开发经验和教学经验的技术大牛带领小伙伴学习,能够让小伙伴更快速的入门大数据开发,同时,培训班还有相关的大数据视频供小伙伴下载学习!

大数据课程:基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。hadoop mapreduce hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。大数据存储阶段:hbase、hive、sqoop。大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。大数据实时计算阶段:Mahout、Spark、storm。大数据数据***集阶段:Python、Scala。大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。

1. 数学知识

数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。

2. 分析工具对于初级数据分析师,玩转Excel是必须的,数据***表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来解决呢。

3. 编程语言对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。对于数据挖掘工程师,Hadoop得熟悉,Python/J***a/C++至少得熟悉一门,Shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。

4. 业务理解业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。

5. 逻辑思维这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。

6. 数据可视化数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。对于初级数据分析师,能用Excel和PPT做出基本的图表和报告,能清楚的展示数据,就达到目标了。对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。

7. 协调沟通对于初级数据分析师,了解业务、寻找数据、讲解报告,都需要和不同部门的人打交道,因此沟通能力很重要。对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。对于数据挖掘工程师,和人沟通技术方面内容偏多,业务方面相对少一些,对沟通协调的要求也相对低一些。

到此,以上就是小编对于大数据智能学习资料的问题就介绍到这了,希望介绍关于大数据智能学习资料的1点解答对大家有用。

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.lnbtw.com/post/8066.html

数据学习数据分析
病理生理学习题指导绿皮书,病理生理讲义 农村生态治理经验交流,农村生态治理经验交流材料