学习经验交流大赛目的,大赛经验交流会

大家好,今天小编关注到一个比较有意思的话题,就是关于学习经验交流大赛目的的问题,于是小编就整理了1个相关介绍学习经验交流大赛目的的解答,让我们一起看看吧。
1+1=2,数学家陈景润废寝忘食数载苦苦钻研的这一课题,到底有什么重大意义?
哥德巴赫猜想, 这个话题其实在网上可以找到很多资料, 我就加一些我自己的话吧.
这的确是好话题. 为什么这么说呢, 因为哥德巴赫猜想(简称"1+1")可以说是在中国知名度最高的数学难题. 如果有人上大街做个调查, 让路人甲说出个数学猜想来, 肯定最多人回答哥德巴赫猜想; 如果要说出几个中国数学家的名字, 那肯定是华罗庚, 陈景润(陈景润在这方面做出突出工作, 华罗庚是他师傅).
甚至, 还有艺人为哥德巴赫猜想写了首歌:
可见这个猜想在中国的知名度.
为什么这个猜想在中国会这么红呢? 又为什么简称为"1+1"呢? 我们还是先来了解一下这个猜想的前世今生吧.
1哥德巴赫其人
哥德巴赫是18世纪的一个业余数学家, 他家境比较好, 对数学很感兴趣. 由于不用像普通老百姓一样为生计奔波, 所以经常搞点小研究, 而且还和很多数学家交了朋友. 毕竟不是职业的数学家, 他没有什么很了不起的成就, 让他出名的是他提出了"哥德巴赫猜想". 我在360百科找来了他的肖像:
2猜想的提出
哥德巴赫结交的数学家朋友当中, 甚至包括大名鼎鼎的欧拉. 有一次, 哥德巴赫感觉自己发现了什么了不解的结论, 又不知道怎么去证明, 于是就给欧拉写了封信. 大数学家欧拉一看, 也觉得很有道理, 但也没证出来. 连欧拉都不会证, 这个猜想就变得出名了, 吸引了很多人去证. 哥德巴赫的猜想是这样的:
陈景润研究的1+1的问题,注意是1+1,而不是1+1=2!
1+1=2这个基本事实,三岁小孩都知道,而且这件事情也不能被证明,因为1+1=2是被人类定义出来的。
而陈景润研究的1+1问题是哥德巴赫猜想的代名词!
1742年6月7日,哥德巴赫给欧拉的信中,提出了一个命题:“任何大于5的奇数都是三个素数之和。但这怎样证明呢?,比如77=53+17+7;461=449+7+5。”后来欧拉把这个猜想进行了下一步完善:即任一大于2的偶数都可写成两个素数之和。今日常见的猜想陈述为欧拉的版本,故而简化叫法:“1+1”
数学家的证法是证明每个大偶数N都可表为A+B,其中A和B的素因子个数分别不超过a和b,故此可以简化记为“a+b"
1920年,挪威的布朗证明了“9 + 9”。
1940年,苏联的布赫夕太勃证明了“4 + 4“
1956年,中国的王元证明了“3 + 4“,稍后证明了 “3 + 3“和“2 + 3“
1948年,匈牙利的瑞尼证明了“1+ c“,其中c是一很大的自然数
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5“, 中国的王元证明了“1 + 4“
陈景润的成果是证明了1+2,而1+2又是距离1+1最近的一步,因此陈景润在有了这么大的声誉,然而很多人都以为陈景润证明了1+1=2,这其实是非常错误的,因为1+1=2是公理不需要证明。
在1742年,数学家哥德巴赫给另一位数学家欧拉写了一封信,信里有一道证明题“任一大于2的偶数都可写成两个质数之和”,比如4可以写成2+2,8可以写成3+5。
质数是一种大于1且除了1和它本身外不能被其他数整除的数,比如2,3,5,7,11都是质数。
陈景润证明的1+2说明了大偶数可以表示为一个质数与不超过两个质数乘积之和,这是目前为止人类距离证明哥德巴赫猜想最近的一次,此后陈景润致力于攻关证明1+1但到死都没有成功。
其实哥德巴赫猜想算是数学猜想中很简单的一个了,任何人都能看懂哥德巴赫猜想的意思,但就是看起来如此简单的猜想却一直困扰了数学家们两个多世纪。
数学的发展短时间内是看不到什么重大意义的,19世纪中期的黎曼几何在20世纪初期的广义相对论中发挥了巨大作用,这是黎曼生前绝对想不到的,而哥德巴赫猜想一旦证明很可能会衍生出新的数学分支,届时这种新数学分支又可能为新的物理理论提供支持,最后像广义相对论一样革新人类对世界的认知。
这个问题的提法是错误的,不是1+1=2.而是一个大偶数等于一个大素数与另一个大素数的和。可简称为1十|。这是大数学家哥德巴赫的一个猜想,故又简称哥德巴赫猜想。
我先看到问题的提法错误,又看到部分回答也是错误的,而且评论区中又有不少无知的喷子乱喷,多是些以为骑自行车可以上月球的人。和他们这些人讲得再好,也难逃挨喷的下场,所以解释和劝阻都是没有意义的!
30年前,陈景润是国内有名的科学明星,他将哥德巴赫猜想证明到了1+2,即大偶数可以表示为一个质数与不超过两个质数乘积之和的形式。这项成果到目前也是最接近哥德巴赫猜想最终结果1+1的证明。注意,这里的1+1不是指1+1=2,指的是任何一个大于2的偶数都可以表示为1个质数再加1个质数的的形式。
陈景润证明出了1+2后并没有停下来,继续向最终目标1+1挺近,遗憾的是他投入了几乎所有的时间也没有完成。
哥德巴赫猜想是数论中的一道著名题目,数论是研究数的规律及性质的一门数学分支,目前看数论是非常基础的数学,除了基本的运算,在技术领域很少用到数论知识,也很少用到质数的分布。在自然科学领域同样也很少用到这些。
这并不意味着数论不重要,研究数的数学分支,从某种意义上说可以是最基础最重要的数学部分。人类对数的认识也是逐步深入的,最开始人类认识了正整数,之后再到有理数,后来根据毕达哥拉斯定理发现直角三角形的斜边可以不是有理数,继而认识发现了无理数。再朝后还发现了虚数,并将虚数投到了应用,目前复变函数已经有了很大的空间。
哥德巴赫猜想会产生什么数学价值,目前还不得而知,就像发明复数的时候谁也不会想到描述微观粒子的薛定谔方程中会出现i。数学是一种工具,是科学的语言,掌握好了工具的使用方法能够更好地为科学服务。研究数论,研究哥德巴赫猜想,不是为了获得经济效益,也不会去考虑如何用其获取经济效益,作为最基础的学问,必须要有人去研究。
到此,以上就是小编对于学习经验交流大赛目的的问题就介绍到这了,希望介绍关于学习经验交流大赛目的的1点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.lnbtw.com/post/8765.html