最新人工智能学习资料,人工智能相关教材

大家好,今天小编关注到一个比较有意思的话题,就是关于最新人工智能学习资料的问题,于是小编就整理了2个相关介绍最新人工智能学习资料的解答,让我们一起看看吧。
人工智能需要学习哪些数学知识?
从我目前工作中用到的数学的角度来讲一下:
- 初级知识:
- 一元一次方程y=kx+b
- 二元一次方程组解法
- 余弦定理
- 勾股定理
- 三角函数
- 幂次运算
- 平方运算
- 分数运算
2. 高级知识
需要先循序渐进地学习几门基础知识:
1、高等数学
2、线性代数
3、概率和数理统计
4、一门计算机语言(Java/C++/Python and the like)
5、算法
数学、统计学与编程一起构成了数据科学(data science)的基础,而数据科学,是人工智能的基本知识之一,因此,学习这些基础是极为重要的:
1、线性代数(Linear Algebra)
2、随机变量(Random Variables)
3、统计分布(Statistical Distributions)
4、概率论(Probability theory)。包括:矩量母函数(Moment Generating Function,简称MGF),CGF,均值(Mean),中位数(Median),众数(Mode),最大似然估计方差(Variance Maximum likelihood Expectation),中心极限定理(Central Limit Theorems),方差分析(Analysis of Variance,简称ANOVA)
5、微积分(Calculus)
6、拟合分析(Fitting of a distribution)
7、样本(Sampling)
8、统计学***设检验(Testing of a hypothesis)
9、贝叶斯建模(Bayesian Modeling)
谢邀,如果要说全,那就多了去了。但实际上如果认真学习大学数学,其实基础已经基本满足,我下面列一些基本的数学知识要求供参考。
基本要求内容:
n阶行列式
n维向量组求解
向量矩阵求解
正定二次型问题
阶方阵的相似矩阵问题
线性规划问题
如果题主所说的【学习人工智能】是指写一些简单的代码,跑个tensorflow的手写数字识别demo,那其实不需要什么数学基础。但如果题主指的是深入了解一些经典模型的工作原理和参数求解算法的细节,那确实还是需要一些数学基础的。就以目前流行的深度学习技术来说,要系统的学习需要有微积分和线性代数的基础,而且微积分部分的基础知识要求并不高,懂链式法则,了解一些常见函数的求导方法就可以了。
不过个人建议如果有时间和精力,除了大热的深度学习技术,最好也对经典的机器学习算法也做一些了解,比如适用于监督学习的LR,SVM,Naive Bayes,Boosting,CRF,HMM,适用于非监督学习的Kmeans,DBScan,LDA。这样可以避免因为技术视野太窄,造成“手中有锤子,看什么都像钉子”的习惯性路径依赖。学习这些传统机器学习技术的数学基础知识要求也不高,除了基础微积分和线性代数,再加上一个概率论就可以搞定。
人工智能知识的分类方法?
人工智能领域的分类包括,研究包括机器人、图像识别、语言识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人,必须懂得计算机知识、心理学和哲学。人工智能主要有三个分支:
1) 认知AI (cognitive AI)
认知计算是最受欢迎的一个人工智能分支,负责所有感觉“像人一样”的交互。认知AI必须能够轻松处理复杂性和二义性,同时还持续不断地在数据挖掘、NLP(自然语言处理)和智能自动化的经验中学习。
a) 数据,大量的数据2) 机器学习AI (Machine Learning AI)
机器学习(ML)AI是能在高速公路上自动驾驶你的特斯拉的那种人工智能。它还处于计算机科学的前沿,但将来有望对日常工作场所产生极大的影响。机器学习是要在大数据中寻找一些“模式”,然后在没有过多的人为解释的情况下,用这些模式来预测结果,而这些模式在普通的统计分析中是看不到的。
到此,以上就是小编对于最新人工智能学习资料的问题就介绍到这了,希望介绍关于最新人工智能学习资料的2点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.lnbtw.com/post/17869.html