hive学习资料,hive基础教程

大家好,今天小编关注到一个比较有意思的话题,就是关于hive学习资料的问题,于是小编就整理了5个相关介绍hive学习资料的解答,让我们一起看看吧。
hive定义?
hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。
hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive十分适合对数据仓库进行统计分析。
hive数据仓库面试都问什么?
在hive数据仓库面试中,通常会被问到技术技能、经验及项目相关问题。
因为作为数据仓库及数据处理领域的热门技术,hive使用广泛,故企业对人才需求也很高,并且对候选人的技术实力和项目经验也有很高的要求。同时,还会关注面试者的学习能力和解决问题的能力。
面试需要准备的材料和知识也包括基础知识、数据存储与处理、性能优化、设计开发等方面。
hive是哪个公司研发的?
hive是Facebook开发的。
hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。
Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive十分适合对数据仓库进行统计分析。
hive和spark学哪个好?
Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。 优势应该在于分布式架构比较相似能快速上手吧
人工智能,除了Python,还需要学习哪些知识与技术?
这是很多本科生同学比较关心的问题,我结合当前课题组的实际情况来回答一下。
首先,人工智能是一个非常大的研究领域,大的研究方向就涉及到机器学习、自然语言处理、计算机视觉、自动推理、知识表示和机器人学,而不同的研究方向对于研究方法和工具也有不同的要求。
编程语言本身就是一种工具,Python和Java都属于比较典型的全场景编程语言,但是由于Python本身的库非常丰富,而且Python语言的语法糖也比较丰富,可以让研究人员把更多的精力放在算法上,所以Python在人工智能领域有非常广泛的应用。
但是在落地应用阶段,J***a和C++的应用就比较多了,一方面这两种编程语言的性能比较稳定,另一方面这两种语言的行业应用生态也比较完善,项目实施的风险会相对比较低。
以我的课题组为例,计算机视觉组普遍在使用C++,自然语言处理组更多在使用Python,落地的时候会使用J***a,当然Python也是可以做落地的,但是不同小组的leader同学往往有自己的考虑,组内的同学也会形成一个统一的选型。
从学习的角度来说,初期学好Python就够用了,然后应该把更多的精力用在机器学习、深度学习上,后期进组后,再根据本组leader的要求来学习其他编程语言也完全来得及。
我多年来一直给研究生上机器学习这门课,课程里的案例实现都在***用Python语言来实现,所以从读研的角度来说,掌握Python也会更方便一些。
学习人工智能对于实践场景的要求比较高,在学习编程语言的过程中,可以参加一些实践活动,比如深度学习、[_a***_]系统、知识图谱等实践活动不仅会促进编程语言的学习和应用,也会提升对于人工智能技术的理解。
考虑到很多同学并没有参加实践的渠道,所以我联合一些985大学的导师共同成立了一个实践平台,陆续开展了深度学习、强化学习、迁移学习、推荐系统、自然语言处理、知识图谱、计算机视觉等方向的实践活动和知识讲座活动,可以联系我申请参与,相信会有所收获。
到此,以上就是小编对于hive学习资料的问题就介绍到这了,希望介绍关于hive学习资料的5点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.lnbtw.com/post/46600.html